精英家教网 > 高中数学 > 题目详情
已知函数
(1)当a=2时,求函数f(x)的单调区间.
(2)若不等式对任意的x∈R恒成立,求a的取值范围.
【答案】分析:(1)当a=2时,根据函数解析式,求出函数的导函数,分析导函数的符号,进而判断出函数f(x)的单调区间.
(2)令f'(x)=0,根据导函数零点,分段讨论函数的单调性和最值,进而根据不等式对任意的x∈R恒成立,不大于函数的最小值,构造关于a的方程
解答:解:(1)当a=2时,

f'(x)=e2x•(2x2-2)=2e2x•(x+1)(x-1)
∵x∈(-1,1)时,f'(x)<0,x∈(-∞,-1)∪(1,+∞)时,f'(x)>0,
∴减区间为(-1,1),增区间为(-∞,-1)和(1,+∞)…(5分)
(2)f'(x)=eax•(ax+2)(x-1)
令f'(x)=0,则或x=1
∵a>0
列表
x,1)1(1,+∞)
f'x+-+
f(x)极大值极小值
∴当x=1时,f(x)有最小值
∴依题意即可
∴ea≤3⇒a≤ln3
解得0<a≤ln3…(12分)
点评:本题考查的知识点是利用导数研究函数的单调性及函数的最值,函数恒成立问题,这导数应用的经典题型
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(14分)已知函数

(1) 当a= -1时,求函数的最大值和最小值;

(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数

(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省金华十校高三上学期期末考试文科数学(解析版) 题型:解答题

(本小题满分15分)

已知函数

(1)当a=1时,求函数在点(1,-2)处的切线方程;

(2)若函数上的图象与直线总有两个不同交点,求实数a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第一次模拟考试文科数学 题型:解答题

(本小题满分14分)

已知函数

(1)当a=1时,求在区间[1,e]上的最大值和最小值;

(2)若在区间上,函数的图象恒在直线下方,求a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知函数

(1)当a=-1时,求函数f(x)的单调区间;

(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知函数

(1)当a=-1时,求函数f(x)的单调区间;

(2)若函数的图象与直线y=ax只有一个公共点,求实数b的取值范围。

 

查看答案和解析>>

同步练习册答案