| A. | 23 | B. | 24 | C. | 25 | D. | 26 |
分析 根据题意,分析可得$\frac{3}{a}$+$\frac{2}{b}$=(3a+2b)($\frac{3}{a}$+$\frac{2}{b}$),对其变形可得$\frac{3}{a}$+$\frac{2}{b}$=13+($\frac{6a}{b}$+$\frac{6a}{b}$),由基本不等式分析可得答案.
解答 解:根据题意,正数a,b满足3a+2b=1,
则$\frac{3}{a}$+$\frac{2}{b}$=(3a+2b)($\frac{3}{a}$+$\frac{2}{b}$)=13+($\frac{6a}{b}$+$\frac{6a}{b}$)≥13+2$\sqrt{\frac{6a}{b}×\frac{6b}{a}}$=25;
即$\frac{3}{a}$+$\frac{2}{b}$的最小值是25;
故选:C.
点评 本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,7) | B. | (-1,6) | C. | (-1,7) | D. | (-2,6) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com