精英家教网 > 高中数学 > 题目详情

已知M(―3,0)、N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数

   (I)求P点的轨迹方程并讨论轨迹是什么曲线?

   (II)若,P点的轨迹为曲线C,过点Q(2,0)的直线l与曲线C交于不同的两点A、B,设轴上的截距的变化范围。

解:(I)由

,轨迹为圆;                             

,轨迹为椭圆;                  

,轨迹为双曲线。                          

   (II),                      

    ②,                               

代入①②得:         ③,

    ④,                                

③式平方除以④式得:,                               

                                                                                

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若m=-
5
9
,P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线?1与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值;
(3)在(2)的条件下,设
QB
AQ
,且λ∈[2,3],求?1在y轴上的截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(3,0)是圆x2+y2-8x-2y+10=0内一点,则过点M最长的弦所在的直线方程是
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市金兰合作组织高二(上)期中数学试卷(文科)(解析版) 题型:填空题

已知M(3,0)是圆x2+y2-8x-2y+10=0内一点,则过点M最长的弦所在的直线方程是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市金兰合作组织高二(上)期中数学试卷(文科)(解析版) 题型:填空题

已知M(3,0)是圆x2+y2-8x-2y+10=0内一点,则过点M最长的弦所在的直线方程是   

查看答案和解析>>

科目:高中数学 来源:2010年湖北省武汉八中高考数学二模试卷(文科)(解析版) 题型:填空题

已知M(3,0)是圆x2+y2-8x-2y+10=0内一点,则过点M最长的弦所在的直线方程是   

查看答案和解析>>

同步练习册答案