精英家教网 > 高中数学 > 题目详情
已知下列三个命题①方程x2-x+2=0的判别式小于或等于零;②矩形的对角线互相垂直且平分;③2是质数,其中真命题是(  )
分析:根据复合命题确定p与q,搞清命题的组成形式,再由复合命题的真值表,我们对题目中的结论逐一进行判断,即可得到答案.
解答:解:对于①△<0,由于方程x2-x+2=0的判别式小于或等于零是p或q的形式,由复合命题的真值表可知为真命题;②矩形的对角线互相垂直且平分是p且q的形式,而且p为假命题且q为真命题,由复合命题的真值表可知为假命题;③2是质数,是真命题.
故选B.
点评:本题考查的知识点是复合命题的真假,其中搞清命题的组成形式,正确运用复合命题的真值表,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•陕西一模)下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则?p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①净A,B,C三种个体按3:1:2的比例分层抽样调查,如果抽取的A个体为9个,则样本容易为30;
②一组数据1、2、3、4、5的平均数、众数、中位数相同;
③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;
④已知具有线性相关关系的两个变量满足的回归直线方程为y=1-2x.则x每增加1个单位,y平均减少2个单位;
⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为0.4
其中真命题为(  )
A、①②④B、②④⑤C、②③④D、③④⑤

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高三上学期第一次联考文科数学试卷(解析版) 题型:选择题

给出下列五个命题:

①将三种个体按的比例分层抽样调查,如果抽取的个体为9个,则样本容量为30;

②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;

③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲;

④已知具有相关关系的两个变量满足的回归直线方程为,则每增加1个单位,平均减少2个单位;

⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在内的频率为0.4.

其中真命题为(     )

A.①②④    B.②④⑤   C.②③④   D.③④⑤

 

查看答案和解析>>

科目:高中数学 来源:2014届海南琼海市高二下学期第一次月考理科数学卷(解析版) 题型:填空题

下列五个命题:

①对于回归直线方程时,.

②频率分布直方图中各小长方形的面积等于相应各组的频数.

③若单调递增,则.

④样本的平均值为,方差为,则 的平均值为,方差为.

⑤甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,相对于用五局三胜制,三局二胜制乙获胜的可能性更大.

其中正确结论的是         (填上你认为正确的所有序号).

 

查看答案和解析>>

同步练习册答案