精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值为$\frac{1}{3}$.

分析 当x≠0时,f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$,结合基本不等式,可得函数的最大值.

解答 解:当x=0时,f(0)=0,
当x≠0时,f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$≤$\frac{1}{\sqrt{2\sqrt{{x}^{2}•\frac{4}{{x}^{2}}}+5}}$=$\frac{1}{3}$,
故函数f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值为$\frac{1}{3}$,
故答案为:$\frac{1}{3}$

点评 本题考查的知识点是函数的最值及其几何意义,基本不等式的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3$\sqrt{2}$,则它的侧棱长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:
 制作模型数x(个) 10 20 30 40 50
 花费时间y(分钟) 64 69 75 82 90
(1)请根据以上数据,求关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.
(注:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,参考数据:$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“?x∈R,tanx≥0”的否定是?x∈R,tanx<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛物线y2=4x上有两点A,B到焦点的距离之和为7,则A,B到y轴的距离之和为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设Sn为数列{an}的前n项和,a3=6且Sn+1=3Sn,则a1+a5等于(  )
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆M过点A(0,$\sqrt{3}$),B(1,0),C(-3,0).
(Ⅰ)求圆M的方程;
(Ⅱ)过点(0,2)的直线l与圆M相交于D、E两点,且|DE|=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=2x,两点M(1,0),N(3,0).
(Ⅰ)求点M到抛物线准线的距离;
(Ⅱ)过点M的直线l交抛物线于两点A,B,若抛物线上存在一点R,使得A,B,N,R四点构成平行四边形,求直线l的斜率.

查看答案和解析>>

同步练习册答案