精英家教网 > 高中数学 > 题目详情
已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.
【答案】分析:(1)由题意知,,所以由S3<a1004+5b2-2012,能求出整数q的值.
(2)假设数列{bn}中存在一项bk,满足bk=bm+bm+1+bm+2+…+bm+p-1,由,得到k≥m+p,另由bk>bm+p-1,得到k<m+p,矛盾.所以,这要的项bk不存在.
(3)由b1=ar,得b2=b1q=arq=as=ar+(s-r)d,则,由此推导出bi一定是数列的项.
解答:解:(1)由题意知,
所以由S3<a1004+5b2-2012,,…(3分).解得1<q<3,
又q为整数,所以q=2.…(5分)
(2)假设数列{bn}中存在一项bk,满足bk=bm+bm+1+bm+2+…+bm+p-1
因为
(*)…(8分)

=2m+p-2m<2m+p,所以k<m+p,此与(*)式矛盾.
所以,这要的项bk不存在…(11分)
(3)由b1=ar,得b2=b1q=arq=as=ar+(s-r)d,
…(12分)

从而
因为as≠ar⇒b1≠b2,所以q≠1,ar≠0,
.又t>s>r,且(s-r)是(t-r)的约数,
所以q是整数,且q≥2…(14分)
对于数列中任一项bi(这里只要讨论i>3的情形),
==
由于(s-r)(1+q+q2+…+qi-2)+1是正整数,
所以bi一定是数列的项…(16分)
点评:本题考查等差数列与等比数列的综合应用,解题时要认真审题,注意等价转化思想、分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省吉安市高三最后一次模拟考试理科数学 题型:解答题

(本小题满分14分)已知数列是以d为公差的等差数列,数列是以q为公比的

    等比数列。

    (1)若数列的前n项和为,求整数q的值;

(2)在(1)的条件下,试问数列中最否存在一项,使得恰好可以表示为该数列

     中连续项的和?请说明理由;

(3)若,求证:数列

     中每一项都是数列中的项。

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.

查看答案和解析>>

科目:高中数学 来源:2011届江西省吉安市中学高三最后一次模拟考试理科数学 题型:解答题

(本小题满分14分)已知数列是以d为公差的等差数列,数列是以q为公比的
等比数列。
(1)若数列的前n项和为,求整数q的值;
(2)在(1)的条件下,试问数列中最否存在一项,使得恰好可以表示为该数列
中连续项的和?请说明理由;
(3)若,求证:数列
中每一项都是数列中的项。

查看答案和解析>>

同步练习册答案