精英家教网 > 高中数学 > 题目详情
已知△ABC的三边分别是a,b,c,且满足b2+c2=bc+a2
(1)求角A;
(2)若a=2,求△ABC的面积的最大值.
考点:余弦定理
专题:解三角形
分析:(1)根据余弦定理直接求解即可求角A;
(2)若a=2,根据三角形的面积公式结合基本不等式的性质即可求△ABC的面积的最大值.
解答: 解:(1)由余弦定理得cosA=
b2+c2-a2
2bc
=
1
2
,则A=
π
3

(2)由题得b2+c2=bc+4≥2bc⇒bc≤4,
S△ABC=
1
2
bcsinA≤
3
(b=c
时取等号)
故△ABC的面积的最大值为
3
点评:本题主要考查余弦定理的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2为双曲线
x2
a2
-
y2
b2
=1的左右焦点,以F1F2为直径作圆与双曲线左支交于A,B两点,且∠AF1B=120°.则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法流程图,则输出的x的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn,且满足:
1
a1-1
+
2
a2-1
+
3
a3-1
+…+
n
an-1
=n,n∈N*
(1)求an
(2)求证:
1
S1
+
1
S2
+…+
1
Sn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(Ⅰ)求函数f(x)单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知⊙O的半径为2,PA是⊙O的切线,A为切点,且PA=2
2
,过点P的一条割线与⊙O交于B,C两点,圆心O到割线的距离为
3
,则PB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一只蜜蜂在一个棱长为5的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于2,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(  )
A、
1
25
B、
8
125
C、
1
125
D、
27
125

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如图所示:规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品.
(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(2)从乙厂抽出上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x+2|
+x
(1)判断函数f(x)在(-2,-1)上的单调性并加以证明;
(2)若函数g(x)=f(x)-2|x|-m有四个不同的零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案