已知直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)与圆C:x2+y2-2x-4y-20=0.
(1)求证:对任意实数m,l与圆C总有两个交点A、B.
(2)当|AB|取得最小值时,求l的方程.
|
解:圆的方程化为标准方程为(x-1)2+(y-2)2=25. (1)常规思路只须证圆心C(1,2)到直线l的距离恒小于半径即可.但注意到直线l的方程可变形为x+y-4+m(2x+y-7)=0,可知l恒过定点(3,1).而(3-1)2+(1-2)2=5<25, ∴点(3,1)在圆内.∴不论m取何实数,直线l与圆恒交于两点A、B. (2)由(1)知,直线l过定点M(3,1),且与过M和C的直线垂直时,l被圆截得的弦长|AB|最短.∵ |
|
(1)欲证l与圆C总有两个交点,只需证圆心到直线l的距离小于半径即可.或只需确定l恒过圆内一点;(2)弦AB最小时,即直线l与弦心距所在直线互相垂直时. |
科目:高中数学 来源:训练必修二数学人教A版 人教A版 题型:044
已知直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)与圆C:x2+y2-2x-4y-20=0,
(1)求证:对任意实数m,l与圆C总有两个交点A、B;
(2)当|AB|取得最小值时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知直线l:(2m+1)x+(m+1)y=7m+5,圆C:x2+y2-6x-8y+21=0.
⑴求证:直线l与圆C总相交;
⑵求相交弦的长的最小值及此时m的值.
查看答案和解析>>
科目:高中数学 来源:内蒙古包头33中09-10学年高二上学期期中考试(理) 题型:解答题
已知直线l:(2m+1)x+(m+1)y=7m+5,圆C:x2+y2-6x-8y+21=0.
⑴求证:直线l与圆C总相交;
⑵求相交弦的长的最小值及此时m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com