(理)过双曲线M:x2-
=1的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线相交与B、C两点,且|AB|=|BC|,则双曲线M的离心率为________.
科目:高中数学 来源: 题型:
(07年崇文区一模理)(13分) 已知双曲线C的中心为坐标原点O,焦点F1、F2在x轴上,点P在双曲线的左支上,点
M在右准线上,且满足![]()
(Ⅰ)求双曲线C的离心率e;
(Ⅱ)若双曲线C过点Q(2,
),B1、B2是双曲线虚轴的上、下端点,点A、B是双曲线上不同的两点,且
,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
(1)若以l0为一条准线,中心在坐标原点的椭圆恰与直线l也相切,切点为T,求椭圆的方程及点T的坐标;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且(
)p2=m,m∈[
,
],求(1)中切点T到直线PQ的距离的最小值.
(文)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.
![]()
(1)若以l0为一条准线,中心在坐标原点的椭圆恰好过点F,求椭圆的方程;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且(
)p2=m,m∈[
,
],求直线PQ的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)若以l0为一条准线,中心在坐标原点的椭圆恰与直线l也相切,切点为T,求椭圆的方程及点T的坐标;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且
p2=m,m∈
,求(1)中切点T到直线PQ的距离的最小值.
![]()
(文)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.
(1)若以l0为一条准线,中心在坐标原点的椭圆恰好过点F,求椭圆的方程;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且
=m,m∈
,求直线PQ的斜率的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
(2010四川理数)(20)(本小题满分12分)
已知定点A(-1,0),F(2,0),定直线l:x=
,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.【来源:全,品…中&高*考+网】
本小题主要考察直线、轨迹方程、双曲线等基础知识,考察平面机袭击和的思想方法及推理运算能力.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com