精英家教网 > 高中数学 > 题目详情
,计算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出关于函数f(x)和g(x)的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是   
【答案】分析:由已知中函数的解析式及f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,分析两个式子中自变量之间的关系,归纳推理可得答案.
解答:解:∵
且f(1)g(3)+g(1)f(3)-g(4)=0,
f(3)g(2)+g(3)f(2)-g(5)=0,

归纳可得:
f(a)g(b)+f(b)g(a)-g(a+b)=0
故答案为:f(a)g(b)+f(b)g(a)-g(a+b)=0
点评:本题考查的知识点是归纳推理,其中根据已知分析出等式中变量之间的关系规律是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
ex+e-x
2
g(x)=
ex-e-x
2
,计算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出关于函数f(x)和g(x)的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是
f(a)g(b)+f(b)g(a)-g(a+b)=0
f(a)g(b)+f(b)g(a)-g(a+b)=0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省衡阳八中高三第三次质量检测数学试卷(理科)(解析版) 题型:填空题

,计算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出关于函数f(x)和g(x)的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是   

查看答案和解析>>

同步练习册答案