精英家教网 > 高中数学 > 题目详情
已知抛物线和抛物线在交点处的两条切线互相垂直,求实数a的值.
【答案】分析:联立抛物线方程即可得到交点坐标,再利用导数即可得到切线的斜率,利用相互垂直即可得到斜率乘积等于-1即可得出a.
解答:解:联立解得,取交点P
取C1在x上方的部分:,则,在点P处的切线斜率k1=
取C2在x上方的部分:,则,在点P处的切线斜率k2=
∵两条抛物线在交点处的两条切线互相垂直,
∴k1k2=-1,即,解得
点评:熟练解出方程组的解、利用导数的几何意义得出切线的斜率是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,
7
2
),N(-
2
6
2
),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-
24
25
=0恒有公共点,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知抛物线和点M(2,2),若抛物线L上存在不同的两点A、B满足

(1)求实数p的取值范围;

(2)当时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市海淀区高三第二次模拟考试数学(理) 题型:解答题

(本小题满分13分)

已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.

(Ⅰ)写出抛物线的标准方程;

(Ⅱ)若,求直线的方程;

(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

(12分)已知抛物线和点M(2,2),若抛物线L上存在不同的两点A、B满足

(1)求实数p的取值范围;

(2)当时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由。

 

 

 

查看答案和解析>>

同步练习册答案