精英家教网 > 高中数学 > 题目详情
已知:数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13,数列{an}、{bn}的前n项和分别为Sn、Tn
(1)求:数列{an},{bn}的通项公式;
(2)求:
S10T10
的值.
分析:(1)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式.
(2)根据等差数列{an}求出S10,根据等比数列{bn}求出T10,然后求其比值即可.
解答:解:(1)设{an}的公差为d,{bn}的公比为q
则依题意有q>0且
1+2d+q4=21
1+4d+q2=13
d=2
q=2
(3分)
∴an=1+(n-1)d=2n-1,bn=qn-1=2n-1(5分)
(2)∵an=2n-1,∴S10=
a1+a10
2
×10=
1+19
2
×10=100
(6分)
∵bn=2n-1,∴T10=
1-210
1-2
=1023
(7分)
S10
T10
=
100
1023
(8分)
点评:本题主要考查等差数列的通项公式和数列的求和,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3,…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}是等差数列,{bn}是等比数列,cn=an-bn,c1=0,c2=
1
6
c3=
2
9
c4=
7
54

(1)求数列{an},{bn}的通项公式;
(2)求和:a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数列{an}是公比小于1的等比数列,其中a2=4,且a1,a2+1,a3成等差数列.
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和记为Sn,求
limn→∞
Sn

查看答案和解析>>

同步练习册答案