解:(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.
则事件A、B、C是相互独立事件,事件
与事件E是对立事件,于是
P(E)=1-P(
)=1-(1-
)(1-
)(1-
)=
.…(4分)
(2)ξ的所有可能取值为30,40,50,60.
P(ξ=30)=P(
)=(1-
)(1-
)(1-
)=
,
P(ξ=40)=P(A
)+P(
)+P(
)=
,…(6分)
P(ξ=50)=P(AB
)+P(A
C)+P(
)=
,
P(ξ=60)=P(ABC)=
.…(8分)
所以ξ的分布列为
∴Eξ=30×
+40×
+50×
+60×
=
.…(12分)
分析:(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则事件A、B、C是相互独立事件,事件
与事件E是对立事件,于是利用间接法能够求出甲乙丙三名同学中至少有一名考核为优秀的概率.
(2)ξ的所有可能取值为30,40,50,60.分别求出P(ξ=30),P(ξ=40),P(ξ=50),P(ξ=60)的值,由此能求出ξ的分布列和数学期望Eξ.
点评:本题考查离散型随机变量的分布列和数学期望,是中档题,在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意概率和排列组合知识的灵活运用.