分析 (Ⅰ)利用图象在点x=0处的切线为y=bx,求出a,b,即可求函数f(x)的解析式;
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,确定函数的单调性,可得φ(x)min=φ(0)=0,即可证明:f(x)≥-x2+x;
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立?$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,k<g(x)min=g(1)=0,即可求实数k的取值范围.
解答 解:(Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知 $\left\{\begin{array}{l}{f(0)=1+a=0}\\{f′(0)=1=b}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,f(x)=ex-x2-1.…(4分)
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.…(8分)
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立?$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,
令g(x)=$\frac{f(x)}{x}$,x>0,
∴g′(x)=$\frac{(x-1){(e}^{x}-x-1)}{{x}^{2}}$,
由(Ⅱ)可知当x∈(0,+∞)时,ex-x-1>0恒成立,…(10分)
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增区间为(1,+∞),减区间为(0,1).g(x)min=g(1)=0.
∴k<g(x)min=g(1)=e-2,∴实数k的取值范围为(-∞,e-2).…(14分)
点评 此题主要考查了利用导数求闭区间上函数的最值问题,考查了函数的单调性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | c<a<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 梯形 | B. | 平行四边形 | C. | 矩形 | D. | 菱形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com