精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=e2-x+a,x∈R的图象在点x=0处的切线为y=bx.
(Ⅰ)求函数f(x)的解析式.
(Ⅱ)当x∈R时,求证:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

分析 (Ⅰ)利用图象在点x=0处的切线为y=bx,求出a,b,即可求函数f(x)的解析式;
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,确定函数的单调性,可得φ(x)min=φ(0)=0,即可证明:f(x)≥-x2+x;
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立?$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,k<g(x)min=g(1)=0,即可求实数k的取值范围.

解答 解:(Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知 $\left\{\begin{array}{l}{f(0)=1+a=0}\\{f′(0)=1=b}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,f(x)=ex-x2-1.…(4分)
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.…(8分)
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立?$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,
令g(x)=$\frac{f(x)}{x}$,x>0,
∴g′(x)=$\frac{(x-1){(e}^{x}-x-1)}{{x}^{2}}$,
由(Ⅱ)可知当x∈(0,+∞)时,ex-x-1>0恒成立,…(10分)
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增区间为(1,+∞),减区间为(0,1).g(x)min=g(1)=0.
∴k<g(x)min=g(1)=e-2,∴实数k的取值范围为(-∞,e-2).…(14分)

点评 此题主要考查了利用导数求闭区间上函数的最值问题,考查了函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在平行六面体ABCD-A1B1C1D1中,M,N分别在面对角线AC,A1C上且CM=2MA,A1N=2ND.记向量$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}=\overrightarrow c$,用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与 A1C1成30°.其中有可能成立的结论的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=($\frac{1}{3}$)-3,b=log3$\frac{1}{2}$,c=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,则(  )
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设抛物线y2=16x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且2$\overrightarrow{BP}$=$\overrightarrow{PA}$,则|AF|+2|BF|=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,命题p:?x∈[-2,-1],x2-a≥0,命题q:?x∈R,x2+2ax-(a-2)=0.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设各项均为正的等比数列{an}满足a4a8=3a7,则log3(a1a2…a9)等于(  )
A.38B.39C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,若$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,则四边形ABCD是(  )
A.梯形B.平行四边形C.矩形D.菱形

查看答案和解析>>

同步练习册答案