精英家教网 > 高中数学 > 题目详情
过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为12
2
,则P=
 
分析:先根据抛物线方程得出其焦点坐标和过焦点斜率为1的直线方程,设出A,B两点的坐标,把直线与抛物线方程联立消去y,根据韦达定理表示出x1+x2和x1x2,进而用A,B坐标表示出梯形的面积建立等式求得p.
解答:解:抛物线的焦点坐标为F(0,
p
2
),则过焦点斜率为1的直线方程为y=x+
p
2

设A(x1,y1),B(x2,y2)(x2>x1),由题意可知y1>0,y2>0
y=x+
p
2
x2=2py
,消去y得x2-2px-p2=0,
由韦达定理得,x1+x2=2p,x1x2=-p2
所以梯形ABCD的面积为:S=
1
2
(y1+y2)(x2-x1)=
1
2
(x1+x2+p)(x2-x1)=
1
2
•3p
x1+x2)  2-4x1x2
=3
2
p2
所以3
2
p2=12
2
,又p>0,所以p=2
故答案为2.
点评:本题考查抛物线的焦点坐标,直线的方程,直线与抛物线的位置关系,考查考生的运算能力,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.
(Ⅰ)求
MA
MB
的取值范围;
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点,求证:
MN
OF
=0,
NQ
OF

(Ⅲ)若p是不为1的正整数,当
MA
MB
=4P2,△ABN的面积的取值范围为[5
5
,20
5
]时,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l过抛物线x2=2py(p>0)的焦点F,且与该抛物线交于A、B两点,l的斜率为k,点C(0,t),当k=0,t=1+2
3
时,△ABC为等边三角形.
(Ⅰ)求抛物线的方程.
(Ⅱ)若不论实数k取何值,∠ACB始终为钝角,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•武汉模拟)过抛物线x2=2py(p>0)的焦点F做倾斜角为30°的直线,与抛物线交于A、B两点(点A在y轴左侧),则
|AF|
|BF|
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线x2=2py(p>0)的焦点F作直线l1交抛物线于A、B两点.O为坐标原点.
(1)过点A作抛物线的切线交y轴于点C,求线段AC中点M的轨迹方程;
(2)若l1倾斜角为30°,则在抛物线准线l2上是否存在点E,使得△ABE为正三角形,若存在,求出E点坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案