精英家教网 > 高中数学 > 题目详情

已知点P1(x1,y1)是直线l:f(x,y)=0上一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直线与l的关系是________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点P1(x0,y0)为双曲线
x2
8b2
-
y2
b2
=1
(b为正常数)上任一点,F2为双曲线的右焦点,过P1作右准线的垂线,垂足为A,连接F2A并延长交y轴于P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)设轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB,QD分别交y轴于M,N两点.求证:以MN为直径的圆过两定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外的一点,则f(x,y)-f(x1,y1)-f(x2,y2)=0方程表示的直线l的位置关系是
平行
平行

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(x1,y1)、P2(x2,y2)分别在直线l上和在l外,若直线l的方程为f(x,y)=0,则方程f(x,y)-f(x1,y1)-f(x2,y2)=0表示(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(x0,y0)为双曲线
x2
3b2
-
y2
b2
=1(b>0,b为常数)
上任意一点,F2为双曲线的右焦点,过P1作右准线的垂线,垂足为A,连接F2A并延长交y轴于点P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)是否存在过点F2的直线l,使直线l与(1)中轨迹在y轴右侧交于R1、R2两不同点,且满足
OR1
OR2
=4b2
,(O为坐标原点),若存在,求直线l的方程;若不存在,请说明理由;
(3)设(1)中轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB、QD分别交y轴于M、N点,求证:以MN为直径的圆恒过两个定点.

查看答案和解析>>

同步练习册答案