2£®Èçͼ£¬ÔÚÀⳤΪaµÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãPΪÌå¶Ô½ÇÏßµÄÖе㣮Èô¡÷PACµÄÕýÊÓͼµÄ×î¸ßµãÓë²àÊÓͼµÄÿһ¸ö¶¥µãÏàÁ¬ËùµÃµÄ¼¸ºÎÌåµÄÌå»ýΪV1£¬Õý·½ÌåÍâ½ÓÇòµÄÌå»ýΪV2£¬Ôò$\frac{{V}_{1}}{{V}_{2}}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{4¦Ð}$B£®$\frac{\sqrt{3}}{4¦Ð}$C£®$\frac{\sqrt{3}}{36¦Ð}$D£®$\frac{\sqrt{6}}{36¦Ð}$

·ÖÎö ÈçͼËùʾ£¬¡÷PACµÄÕýÊÓͼµÄ×î¸ßµãP1ΪÕý·½ÐÎCDD1C1µÄÖÐÐÄ£®Óë²àÊÓͼµÄÿһ¸ö¶¥µãÏàÁ¬ËùµÃµÄ¼¸ºÎÌåΪÈýÀâ×¶P1-P2BC£¬ÆäÖеãP2ΪÕý·½ÐÎBCC1B1µÄÖÐÐÄ£®Ìå»ýV1=$\frac{1}{3}{S}_{¡÷{P}_{1}BC}$$•\frac{1}{2}a$£®Õý·½ÌåÍâ½ÓÇòµÄÖ±¾¶ÎªÕý·½ÌåµÄ¶Ô½ÇÏߣ¬³¤¶ÈΪ$\sqrt{3}$a£¬Ìå»ýΪV2=$\frac{4}{3}¦Ð£¨\frac{\sqrt{3}}{2}a£©^{3}$£®¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÈçͼËùʾ£¬¡÷PACµÄÕýÊÓͼµÄ×î¸ßµãP1ΪÕý·½ÐÎCDD1C1µÄÖÐÐÄ£®
Óë²àÊÓͼµÄÿһ¸ö¶¥µãÏàÁ¬ËùµÃµÄ¼¸ºÎÌåΪÈýÀâ×¶P1-P2BC£¬ÆäÖеãP2ΪÕý·½ÐÎBCC1B1µÄÖÐÐÄ£®
Ìå»ýV1=$\frac{1}{3}{S}_{¡÷{P}_{1}BC}$$•\frac{1}{2}a$=$\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}a•a¡Á\frac{1}{2}a$=$\frac{1}{24}{a}^{3}$
Õý·½ÌåÍâ½ÓÇòµÄÖ±¾¶ÎªÕý·½ÌåµÄ¶Ô½ÇÏߣ¬³¤¶ÈΪ$\sqrt{3}$a£¬Ìå»ýΪV2=$\frac{4}{3}¦Ð£¨\frac{\sqrt{3}}{2}a£©^{3}$=$\frac{\sqrt{3}¦Ð{a}^{3}}{2}$£®
Ôò$\frac{{V}_{1}}{{V}_{2}}$=$\frac{\frac{1}{24}{a}^{3}}{\frac{\sqrt{3}¦Ð{a}^{3}}{2}}$=$\frac{\sqrt{3}}{36¦Ð}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÈýÊÓͼµÄÓйØÖªÊ¶¡¢ÈýÀâ×¶µÄÌå»ý¡¢Õý·½ÌåµÄÐÔÖÊ¡¢ÇòµÄÌå»ý¼ÆË㹫ʽ£¬¿¼²éÁ˿ռäÏëÏóÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®±ÈÖµ$\frac{l}{r}$£¨lÊÇÔ²ÐĽǦÁËù¶ÔµÄ»¡³¤£¬rÊǸÃÔ²µÄ°ë¾¶£©£¨¡¡¡¡£©
A£®¼ÈÓë¦ÁµÄ´óСÓйأ¬ÓÖÓërµÄ´óСÓйØ
B£®Óë¦Á¼°rµÄ´óС¶¼ÎÞ¹Ø
C£®Óë¦ÁµÄ´óСÓйأ¬¶øÓërµÄ´óСÎÞ¹Ø
D£®Óë¦ÁµÄ´óСÎ޹أ¬¶øÓërµÄ´óСÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+cºÍÒ»´Îº¯Êýg£¨x£©=-bx£¬ÆäÖÐa£¬b£¬c¡ÊRÇÒÂú×ãa£¾b£¾c£¬f£¨1£©=0£®
£¨¢ñ£©Ö¤Ã÷£ºº¯Êýf£¨x£©Óëg£¨x£©µÄͼÏó½»ÓÚ²»Í¬µÄÁ½µã£»
£¨¢ò£©Èôº¯ÊýF£¨x£©=f£¨x£©-g£¨x£©ÔÚ[2£¬3]ÉϵÄ×îСֵΪ9£¬×î´óֵΪ21£¬ÊÔÇóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÈý½ÇÐÎABCËùÔÚÆ½ÃæÄÚÒ»µãMÂú×ãÌõ¼þ$\overrightarrow{CM}=\frac{1}{6}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}$£¬ÔòS¡÷MAC£ºS¡÷MABµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{2}{3}$C£®$\frac{1}{2}$D£®$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèÍÖÔ²E£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1£¬Ò»×鯽ÐÐÖ±ÏßµÄбÂÊÊÇ$\frac{3}{2}$
£¨1£©Õâ×éÖ±ÏߺÎʱÓëÍÖÔ²Ïཻ£¿
£¨2£©µ±ËüÃÇÓëÍÖÔ²Ïཻʱ£¬ÇóËüÃÇÖеãµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èôº¯Êýf£¨x£©=$\frac{1}{3}{x^3}-f'£¨-1£©{x^2}$+x£¬Ôò[f¡ä£¨0£©+f¡ä£¨1£©]f¡ä£¨2£©=91£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®µ×Ãæ±ß³¤Îª2£¬²àÀⳤΪ$\sqrt{3}$µÄÕýËÄÀâ×¶µÄÌå»ýΪ$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¼¯ºÏA={1£¬a£¬a-1}£¬Èô-2¡ÊA£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®-1»ò-2D£®-2»ò-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¹ýµãPµÄÖ±ÏßlÔÚxÖáÉϽؾàΪ1£¬µãPΪֱÏßx-2y-2=0Óëx+y+1=0µÄ½»µã£®
£¨1£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôlÓëÔ²C£ºx2+y2-2y-3=0½»ÓÚA¡¢BÁ½µã£¬Çó¡÷ABCÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸