精英家教网 > 高中数学 > 题目详情
某学生在观察正整数的前n项平方和公式即12+22+32+…+n2=,n∈N*时发现它的和为关于n的三次函数,于是他猜想:是否存在常数a,b,1•22+2•32+…+n(n+1)2=.对于一切n∈N*都立?
(1)若n=1,2 时猜想成立,求实数a,b的值.
(2)若该同学的猜想成立,请你用数学归纳法证明.若不成立,说明理由.
【答案】分析:(1)先假设存在符合题意的常数a,b,由n=1,n=2构造个方程求出a,b即可,
(2)再用用数学归纳法证明其是否成立,证明时先证:(1)当n=1时成立.(2)再假设n=k(k≥1)时,成立,即1•22+2•32++k(k+1)2=(3k2+11k+10),再递推到n=k+1时,成立即可.
解答:证明:(1)若n=1,2 时猜想成立,
假设存在符合题意的常数a,b,
在等式1•22+2•32++n(n+1)2
=中,
令n=1,得4=(a+b)①
令n=2,得22=2(2a+b)②
由①②解得a=3,b=5,
(2)于是,对于对于一切正整数n猜想都有
1•22+2•32++n(n+1)2=(3n2+11n+10)(*)成立.
下面用数学归纳法证明:对于一切正整数n,(*)式都成立.
(1)当n=1时,由上述知,(*)成立.
(2)假设n=k(k≥1)时,(*)成立,
即1•22+2•32++k(k+1)2
=(3k2+11k+10),
那么当n=k+1时,
1•22+2•32++k(k+1)2+(k+1)(k+2)2
=(3k2+11k+10)+(k+1)(k+2)2
=(3k2+5k+12k+24)
=[3(k+1)2+11(k+1)+10],
由此可知,当n=k+1时,(*)式也成立.
综上所述,当a=3,b=5时题设的等式对于一切正整数n都成立.
点评:本小题主要考查数学归纳法、数列的求和、存在性问题等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学生在观察正整数的前n项平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*时发现它的和为关于n的三次函数,于是他猜想:是否存在常数a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.对于一切n∈N*都立?
(1)若n=1,2 时猜想成立,求实数a,b的值.
(2)若该同学的猜想成立,请你用数学归纳法证明.若不成立,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学生在观察正整数的前n项平方和公式即12+22+32+…+n2=数学公式,n∈N*时发现它的和为关于n的三次函数,于是他猜想:是否存在常数a,b,1•22+2•32+…+n(n+1)2=数学公式.对于一切n∈N*都立?
(1)若n=1,2 时猜想成立,求实数a,b的值.
(2)若该同学的猜想成立,请你用数学归纳法证明.若不成立,说明理由.

查看答案和解析>>

同步练习册答案