精英家教网 > 高中数学 > 题目详情
11.函数f(x)=x+2cosx在区间[0,π]上的最大值为(  )
A.2B.π-2C.$\sqrt{3}+\frac{5π}{6}$D.$\sqrt{3}+\frac{π}{6}$

分析 先求出函数f(x)的导数,得到函数的单调区间,从而求出函数的最大值.

解答 解:f′(x)=1-2sinx,
令f′(x)>0,解得:x<$\frac{π}{6}$或x>$\frac{5π}{6}$,
令f′(x)<0,解得:$\frac{π}{6}$<x<$\frac{5π}{6}$,
∴函数f(x)在[0,$\frac{π}{6}$),($\frac{5π}{6}$,π]递增,在($\frac{π}{6}$,$\frac{5π}{6}$)递减,
∴f(x)极大值=f($\frac{π}{6}$)=$\sqrt{3}$+$\frac{π}{6}$,f(x)极小值=f($\frac{5π}{6}$)=$\frac{5π}{6}$-$\sqrt{3}$,
又f(0)=2,f(π)=π-2,
故所求最大值为$\sqrt{3}$+$\frac{π}{6}$.

点评 本题考查了函数的单调性、函数的最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若(3$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n 的展开式中各项系数之和为256,则展开式的常数项是(  )
A.第3项B.第4项C.第5项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面直角坐标系中,O为原点,A(3,4),B(-5,12)
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$;
(2)若点P在直线AB上,且$\overrightarrow{OP}$⊥$\overrightarrow{AB}$,求$\overrightarrow{OP}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则可以估计出阴影部分的面积约为(  )
A.$\frac{23}{11}$B.$\frac{23}{10}$C.$\frac{23}{6}$D.$\frac{23}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在一个口袋中装有红、黄、率、蓝、黑、白6种不同颜色的球,每种颜色的球均超过3个,这些球除颜色外完全相同,
(1)若一次从中摸出3个球,求共有多少种不同的选法?
(2)若一次从中摸出3个球,试列出含有红球个数ξ的分布列,并计算其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知M是由所有满足下述条件的函数f(x)构成的集合:①方程f(x)-x=0有实数根;②设函数f(x)的导函数f′(x),且对f(x)定义域内任意的x,都有f′(x)>1.
(Ⅰ)判断函数f(x)=2x+sinx是否是集合M中的元素,并说明理由;
(Ⅱ)若函数g(x)=lnx+ax是集合M中的元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.使|x-4|+|x-5|<a有实数解的a为(  )
A.a>1B.1<a<9C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中既是偶函数,又在区间(0,+∞)上单调递增的函数式(  )
A.y=x3B.y=-x3+1C.y=|x|+1D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,b2cosC+bccosB=a2,则△ABC的形状是(  )
A.直角三角形B.锐角三角形C.等腰直角三角形D.等腰三角形

查看答案和解析>>

同步练习册答案