精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的通项公式为an=n,数列{bn}的通项公式为bn=2n
(1)数列{an}的前n项和为$\frac{1}{2}$n(n+1);
(2)数列{bn}的前n项和为2n+1-2;
(3)设cn=an+bn,求数列{cn}的前n项和;
(4)设cn=an•bn,求数列{cn}的前n项和;
(5)设cn=$\frac{1}{{{a}_{n}•a}_{n+1}}$,求数列{cn}的前n项和.

分析 (1)由等差数列的求和公式,即可得到;(2)由等比数列的求和公式即可得到;
(3)运用分组求和的方法,结合等差数列和等比数列的求和公式,即可得到;
(4)由错位相减法求和,结合等比数列的求和公式,即可得到;
(5)由cn=$\frac{1}{{{a}_{n}•a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用裂项相消求和即可得到.

解答 解:(1)an=n,由等差数列的求和公式可得,
数列{an}的前n项和为$\frac{1}{2}$n(n+1);
(2)bn=2n.由等比数列的求和公式可得,
数列{bn}的前n项和为$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2;
(3)cn=an+bn=n+2n
数列{cn}的前n项和为$\frac{1}{2}$n(n+1)+2n+1-2;
(4)cn=an•bn=n•2n
即有前n项和Tn=2+2•22+3•23+…+n•2n
2Tn=22+2•23+3•24+…+n•2n+1
两式相减可得-Tn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1
化简可得,前n项和Tn=(n-1)•2n+1+2;
(5)cn=$\frac{1}{{{a}_{n}•a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{cn}的前n项和Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{1}{2}$n(n+1),2n+1-2.

点评 本题考查等差数列和等比数列的求和公式的运用,考查数列的求和方法:分组求和、裂项相消求和和错位相减法求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为60°,且|$\overrightarrow{m}$|=1,|$\overrightarrow{n}$|=2,又$\overrightarrow{a}$=2$\overrightarrow{m}$+$\overrightarrow{n}$,$\overrightarrow{b}$=-3$\overrightarrow{m}$+$\overrightarrow{n}$
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦;
(Ⅱ)设$\overrightarrow{c}$=t$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{m}$-$\overrightarrow{n}$,若$\overrightarrow{c}$⊥$\overrightarrow{d}$,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2) 
②f(x1•x2)=f(x1)+f(x2
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0        
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
当f(x)=log${\;}_{\frac{1}{2}}$x时,上述结论中正确的序号是(  )
A.①③B.②③C.②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有三个结论:①$\frac{π}{6}$与$\frac{5}{6}$π的正弦线长度相等:②$\frac{π}{6}$与$\frac{7}{6}$π的正弦线长度相等:③$\frac{π}{4}$与$\frac{9}{4}$π的正弦线长度等.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中,a1=3,前n项和为Sn,在各项均为正数的等比数列{bn}中,b1=1,公比为q,且b2+S2=12,q=$\frac{{S}_{2}}{{b}_{2}}$,
(Ⅰ)求{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=$\frac{3}{2{S}_{n}}$,且数列{cn}的前n项和为Tn.证明:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在非等腰△ABC中,A,B,C的对边分别是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面积为6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中,BC=1.BB1=2.E,F分别为棱A1B1,CD的中点,则直线AB和EF的位置关系是垂直;EF的长度为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且对任意正整数n,都有Sn=$\frac{{a}_{n}-1}{λ}$(λ≠0.1).
(Ⅰ)求证:{an}为等比数列;
(Ⅱ)若λ=$\frac{1}{2}$,且bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.填空:sin2$\frac{9π}{2}$+cos2(-$\frac{13π}{4}$)-tan2$\frac{7π}{3}$=$-\frac{3}{2}$.

查看答案和解析>>

同步练习册答案