【题目】如图,已知四棱柱
的底面
是正方形,侧面
是矩形,
,
为
的中点,平面
平面
.
![]()
(1)证明:
平面
;
(2)判断二面角
是否为直二面角,不用说明理由;
(3)求二面角
的大小.
【答案】(1)见解析;(2)是;(3)
.
【解析】
(1)连接
、
、
,平面
即为平面
,推导出
,
,
,由此能证明
平面
;
(2)二面角
是直二面角;
(3)以
为原点,
为
轴,
为
轴,
为
轴,建立空间直角坐标系,利用空间向量法能求出二面角
的大小.
(1)连接
,
,
.
![]()
平面
即为平面
,
底面
是正方形,
.
又平面
平面
,平面
平面
,
平面
,
平面
,又
平面
,
,
侧面
是矩形,
,
又
,
平面
,
平面
,
平面
;
(2)二面角
为直二面角;
(3)由(1)可知,
,
,
,
故以
为坐标原点,
方向为
轴正方向,
为单位长度,建立如下图所示的空间直角坐标系
,则
,
,
,
![]()
所以
,
,设平面
的法向量为
,
则
,令
,则
,
,则
,
由(1)知,
平面
,所以,
是平面
的一个法向量,
于是
,
由(2)知二面角
的平面角为钝角,所以二面角
的大小为
.
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
,
,
,
,且
的最小值为
,
的图象的相邻两条对称轴之间的距离为
,
的图象关于原点对称.
(1)求函数
的解析式和单调递增区间;
(2)在
中,角
所对的边分别为
,且
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于
分的选手定为合格选手,直接参加第二轮比赛,大于等于
分的选手将直接参加竞赛选拔赛.已知成绩合格的
名参赛选手成绩的频率分布直方图如图所示,其中
的频率构成等比数列.
![]()
(1)求
的值;
(2)估计这
名参赛选手的平均成绩;
(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为
,假设每名选手能否通过竞赛选拔赛相互独立,现有
名选手进入竞赛选拔赛,记这
名选手在竞赛选拔赛中通过的人数为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
,圆
:
,直线
:
与抛物线
相切于点
,且与圆
相切于点
.
![]()
(1)当
,
时,求直线
方程与抛物线
的方程;
(2)设
为抛物线
的焦点,
,
的面积分别为
,
,当
取得最大值时,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了
名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.
![]()
有声书公司将付费高于
元的用户定义为“爱付费用户”,将年龄在
岁及以下的用户定义为“年轻用户”.已知抽取的样本中有
的“年轻用户”是“爱付费用户”.
(1)完成下面的
列联表,并据此资料,能否有
的把握认为用户“爱付费”与其为“年轻用户”有关?
爱付费用户 | 不爱付费用户 | 合计 | |
年轻用户 | |||
非年轻用户 | |||
合计 |
(2)若公司采用分层抽样方法从“爱付费用户”中随机选取
人,再从这
人中随机抽取
人进行访谈,求抽取的
人恰好都是“年轻用户”的概率.
|
|
|
|
|
|
|
|
|
|
|
|
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数
与
的和表示
等.从
这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com