已知一动直线
与两坐标轴的正半轴围成的三角形的面积的数值比直线
的纵、横截距之和大1,求这三角形面积的最小值.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| a2+b2 |
| 5 |
| 2 |
| 2 |
| 2 |
| M1F1 |
| M1F |
| 3 |
| MN |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| a2+b2 |
| 2 |
| 2 |
| M1F1 |
| M1F |
| 3 |
| 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市徐汇区高三上学期期末考试(一模)理科数学试卷(解析版) 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市徐汇区高三上学期期末考试(一模)文科数学试卷(解析版) 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆的中心在坐标原点
,焦点在X轴上,F1,F2分别是椭圆的左、右焦点,M是椭圆短轴的一个端点,△MF1F2的面积为4,过F1的直线
与椭圆交于A,B两点,△ABF2的周长为
.
(Ⅰ)求此椭圆的方程;
(Ⅱ)若N是左标平面内一动点,G是△MF1F2的重心,且
,求动点N的轨迹方程;
(Ⅲ)点p审此椭圆上一点,但非短轴端点,并且过P可作(Ⅱ)中所求得轨迹的两条不同的切线,
、R是两个切点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com