精英家教网 > 高中数学 > 题目详情

如图,经过B(1,2)作两条互相垂直的直线l1和l2,l1交y轴正半轴于点A,l2交x轴正半轴于点C.
(1)若A(0,1),求点C的坐标;
(2)试问是否总存在经过O,A,B,C四点的圆?若存在,求出半径最小的圆的方程;若不存在,请说明理由.

解:(1)由直线l1经过两点A(0,1),B(1,2),得l1的方程为x-y+1=0.
由直线l2⊥l1,且直线l2经过点B,得l2的方程为x+y-3=0.
所以,点C的坐标为(3,0).
(2)因为AB⊥BC,OA⊥OC,所以总存在经过O,A,B,C四点的圆,且该圆以AC为直径.
①若l1⊥y轴,则l2∥y轴,此时四边形OABC为矩形,
②若l1与y轴不垂直,则两条直线斜率都存在.不妨设直线l1的斜率为k,则直线l2的斜率为
所以直线l1的方程为y-2=k(x-1),从而A(0,2-k);
直线l2的方程为,从而C(2k+1,0).
解得,注意到k≠0,所以
此时|AC|2=(2-k)2+(2k+1)2=5k2+5>5,
所以半径的最小值为
此时圆的方程为
分析:(1)先求l1的方程,进而可求l2的方程,即可得到点C的坐标;
(2)因为AB⊥BC,OA⊥OC,所以总存在经过O,A,B,C四点的圆,且该圆以AC为直径,分类讨论,确定A、C的坐标,表示出AC,即可求得结论.
点评:本题考查确定直线位置的几何要素,直线的倾斜角和斜率,过两点的直线斜率的计算公式,直线方程的点斜式,两条直线平行或垂直的判定,圆的标准方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2.其中-2<x1<-1,0<x2<1,
下列结论:
①4a-2b+c<0;  
②2a-b<0; 
③a<-1; 
④b2+8a>4ac.
其中正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,经过B(1,2)作两条互相垂直的直线l1和l2,l1交y轴正半轴于点A,l2交x轴正半轴于点C.
(1)若A(0,1),求点C的坐标;
(2)试问是否总存在经过O,A,B,C四点的圆?若存在,求出半径最小的圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1、x2,其中-2<x1<-1,0<x2<1.下列结论:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中正确结论的序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源:2012年北京市会考说明:题目示例(解析版) 题型:解答题

如图,经过B(1,2)作两条互相垂直的直线l1和l2,l1交y轴正半轴于点A,l2交x轴正半轴于点C.
(1)若A(0,1),求点C的坐标;
(2)试问是否总存在经过O,A,B,C四点的圆?若存在,求出半径最小的圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案