精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3+x+1,则$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=8.

分析 先求出f′(x),由$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=2f′(1),能求出结果.

解答 解:∵函数f(x)=x3+x+1,
∴f′(x)=3x2+1,
∴$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=2$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{2△x}$=2f′(1)=2•(3+1)=8.
故答案为:8.

点评 本题考查极限的求法,是基础题,解题时要认真审题,注意导数概念及性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,已知a5=-3,S10=-40.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆x2+y2-4axcosθ-4aysinθ+3a2=0(a≠0,θ为参数)的圆心的轨迹为圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=tan2x-2tanx+3的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C的方程为(x+1)2+(y-3)2=4,过点(1,0)的直线l的斜率为k,设圆C上到l的距离为l的点的个数z,求z关于k的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.网上有一项虚似的游戏,在如图所示的等腰直角三角形上有15个格点(横、纵相邻格点间的距离为1个单位),三角形边界上的每个格点记1分,三角形内部的每个格点记2分,若点击鼠标左键,屏幕上会随机等可能地显示点中的某一格点,点中某格点后,将与其距离为1个单位的格点的分数和作为其得分.
(1)某人点击鼠标左键,若第一次显示点中三角形内部的格点,第二次显示点中三角形边界上的格点,求恰好两次点中的格点间的距离为1个单位的概率;
(2)随即点击鼠标左键一次,其得分记为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)是定义在实数集R上的函数,且对任意实数x,y满足f(x-y)=f(x)+f(y)+xy-1恒成立.
(1)求f(0),f(1);
(2)求函数f(x)的解析式;
(3)若方程f[(f(2x)]=k恰有两个实数根在(-2,2)内,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合M={x|lg(1-x)<0},集合N={x|x2≤1},则M∩N=(  )
A.(0,1)B.[0,1)C.[-1,1]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2sin(2x+$\frac{π}{6}$),把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数B.其图象关于直线x=-$\frac{π}{4}$对称
C.函数g(x)是奇函数D.当x∈[0,$\frac{π}{3}$]时,函数g(x)的值域是[-1,2]

查看答案和解析>>

同步练习册答案