精英家教网 > 高中数学 > 题目详情
A={x|x=kπ+(-1)k·,k∈Z},B={x|x=2kπ+,k∈Z},则A、B的关系为_________.

答案:A=B

解析:当k为偶数时,设k=2n(n∈Z),则A={x|x=2nπ+,n∈Z},B={x|x=4nπ+,n∈Z},此时A=B;当k为奇数时,设k=2n+1(n∈Z),则A={x|x=(2n+1)π-,n∈Z}={x|x=2nπ+,n∈Z},?B={x|x=2·(2n+1)π+,n∈Z},此时A=B.

综上可得,A=B.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|x=kπ+
π
2
,k∈Z },已知
a
=(2cos
α+β
2
,sin
α-β
2
),
b
=(cos
α+β
2
,3sin
α-β
2
),
(1)若α+β=
3
,且
a
=2
b
,求α,β的值.
(2)若
a
b
=
5
2
,其中 α,β∈A,求tanαtanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=tan(x-
π
4
)
的定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,
π
2
],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
π
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,数学公式],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,数学公式]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:湖南省月考题 题型:解答题

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)﹣f1(x)≤k(x﹣a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=﹣x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

同步练习册答案