精英家教网 > 高中数学 > 题目详情
现从某100件中药材中随机抽取10件,以这10件中药材的重量(单位:克)作为样本,样本数据的茎叶图如图,
(Ⅰ)求样本数据的中位数、平均数,并估计这100件中药材的总重量;
(Ⅱ)记重量在15克以上的中药材为优等品,在该样本的优等品中,随机抽取2件,求这2件中药材的重量之差不超过2克的概率.
考点:古典概型及其概率计算公式,茎叶图
专题:概率与统计
分析:(Ⅰ)根据茎叶图数据直接求样本数据的中位数、平均数即可;!
(Ⅱ)列举从10件中药材的优等品中随机抽取2件的所有基本事件,找出2件优等品的重量之差不超过2克所包含的事件,利用古典概型概率公式计算即可.
解答: 解:(Ⅰ)样本数据的中位数是
12+17
2
=14.5

样本数据的平均数是
8+9+10+12+12+17+18+20+21+23
10
=15;
根据样本数据估计总体的思想可得,这100件中药材重量的平均数是15克,
因此,估计这100件中药材的总重量约为100×15=1500克.
(Ⅱ)这10件中药材的优等品的重量有17克、18克、20克、21克、23克.
从10件中药材的优等品中随机抽取2件,所有基本事件有:
(17,18),(17,20),(17,21),(17,23),(18,20),(18,21),
(18,23),(20,21),(20,23),(21,23)共10个.
记“2件优等品的重量之差不超过2克”为事件A,
则事件A的基本事件有:(17,18),(18,20),),(20,21),(21,23)共4个.
∴P(A)=
4
10
=
2
5

∴这2件中药材的重量之差不超过2克的概率为
2
5
点评:本题考查茎叶图、平均数、中位数、古典概型等知识,以及数据处理能力,样本估计总体的数学思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
A、4-
3
B、4-
3
C、6-
3
D、8-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

利用“描点法”画出函数y=sin(
1
2
x+
π
6
)在长度为一个周期的闭区间的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(x)=f(x+1)-g(x),其中a,b∈R.
(I)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;
(Ⅱ)当b=2-a,a>0时,求F(x)的最大值;
(Ⅲ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1),n∈N,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

某盒子里装有大小、形状完全相同的卡片10张,上面分别写着数字0,1,2,3,以下是10张卡片上的数字的统计结果:
数字0123
卡片张数1234
根据表中信息解答以下问题:
(Ⅰ)从10张卡片中随机抽取2张,求这两张卡片上的数字之和为4的概率;
(Ⅱ)从10张卡片中随机抽取2张,用X表示抽取的这两张卡片上的数字之差的绝对值,求随机变量X的分布列及数字期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,
5i
3-4i
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知tanC=
5
2

(1)sin2
A+B
2
的值;
(2)若AB=2
5
,AC=6,D为AC的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=1,前n项和为Sn且满足条件:
S2n
Sn
=
4n+2
n+1
(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和为Tn
Tn+1-bn+1
Tn+bn
=1(n∈N*),b1=3,又cn=
2an+1
bn-1
,求数列{cn}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=-x2-2x,若f(2-a2)>f(a),则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案