精英家教网 > 高中数学 > 题目详情
设数列{an}为等差数列,其前n项和为Sn,已知a1+a4+a7=60,a2+a5+a8=51,若对任意n∈N*,都有Sn<Sk成立,则k的值为
10
10
分析:利用等差数列的性质可求得a4、a5、的值,从而可求得其公差d=-3,继而可求得an,sn,sk,利用任意n∈N*,都有Sn<Sk成立,可求得k的值.
解答:解:∵数列{an}为等差数列,a1+a4+a7=60,a2+a5+a8=51,
∴3a4=60,3a5=51,
∴a4=20,a5=17,设等差数列{an}的公差为d,则d=a5-a4=-3,
∴an=a4+(n-4)d=20+(n-4)×(-3)=32-3n.
对任意n∈N*,都有Sn<Sk成立,则sk为前n项和的最大值,
an≥0
an+1≤0
32-3n≥0
32-3(n+1)≤0
解得
29
3
≤n≤
32
3
,又n∈N*,
∴n=10.
故答案为:10.
点评:本题考查等差数列的前n项和,着重考查等差数列的通项公式与求和公式,特别是“对任意n∈N*,都有Sn<Sk成立”的含义的理解--sk为前n项和的最大值.属于难题.
属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a1=1,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n=1,2,3,4,…
(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn
1
an+1
1
an+3
的等差中项,数列{bn}的前n项和为Sn,求证:
3
8
Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
a
2
n
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1);  ②f(x)的最小值为-
1
8

(1)求函数f(x)的解析式;
(2)设数列{an}的前n项积为Tn,且Tn=(
4
5
f(n),求数列{an}的通项公式;
(3)在(2)的条件下,若5f(an)是bn与an的等差中项,试问数列{bn}中第几项的值最小?求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
1
2
an2和an的等差中项
(Ⅰ)证明:数列为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1

(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式2Sn-4200>
a
2
n
2
恒成立,试问:这样的正整数m共有多少个.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{
anbn
}的前n项和Sn

查看答案和解析>>

同步练习册答案