【题目】已知椭圆
的左、右焦点分别为
,离心率为
,点
为坐标原点,若椭圆
与曲线
的交点分别为
(
下
上),且
两点满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
上异于其顶点的任一点
,作
的两条切线,切点分别为
,且直线
在
轴、
轴上的截距分别为
,证明:
为定值.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)设
,然后根据向量数量积求得
的值,再结合离心率求得
的值,由此求得椭圆方程;(2).设点
,然后根据条件求得
的方程,从而求得直线
在
轴、
轴上的截距为
,进而使问题得证.
试题解析:(1)设椭圆
的半焦距为
,设
,则
,
由
,得
,∴
,①
又椭圆
的离心率为
,所以
,②
又
,③
由①②③,解得
,
故椭圆
的标准方程为
................................... 6分
(2)如图,设点
,由
是
的切点知,
,
所以
四点在同一圆上,且圆的直径为
,
则圆心为
,其方程为
,
即
,④
即点
满足话中④,又点
都在
上,
所以
坐标也满足方程
,⑤
⑤-④得直线
的方程为
,
令
,得
;令
,得
,所以
,
又点
在椭圆
上,所以
,即
中,
即
,即
为定值.........................12分
![]()
科目:高中数学 来源: 题型:
【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
抛物线
的焦点
在椭圆
上.命题
直线
经过抛物线
的焦点
,且直线
过椭圆
的左焦点
,
是真命题.
(I)求直线
的方程;
(II)直线
与抛物线相交于
、
,直线
、
,分别切抛物线于
,求
的交点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
)
(Ⅰ) 若
在其定义域内为单调递减函数,求
的取值范围;
(Ⅱ) 是否存在实数
,使得当
时,不等式
恒成立,如果存在,求
的取值范围,如果不存在,说明理由(其中
是自然对数的底数,
=2.71828…).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2009年推出一种新型家用轿车,购买时费用为
万元,每年应交付保险费、养路费及汽油费共
万元,汽车的维修费为:第一年无维修费用,第二年为
万元,从第三年起,每年的维修费均比上一年增加
万元.
(1)设该辆轿车使用
年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为
,求
的表达式;
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为实数).
(1)当
时,求函数
的图象在点
处的切线方程;
(2)设函数
(其中
为常数),若函数
在区间
上不存在极值,且存在
满足
,求
的取值范围;
(3)已知
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com