精英家教网 > 高中数学 > 题目详情

已知,使式中的满足约束条件

(1)作出可行域;

(2)求z的最大值.

 

 

【答案】

作出可行域 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5.
若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-n2+n+2(n∈Z)满足f(8)-f(5)>0.
(1)求f(x)的解析式;
(2)对于(1)中得到的函数f(x),试判断是否存在k>0,使h(x)=1-
k
2
f(x)+(2k-1)x在区间[-1,2]上的值域为[-4,
17
8
]?若存在,求出k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年新疆乌鲁木齐八中高一下学期期末考试数学 题型:解答题

已知,使式中的满足约束条件
(1)作出可行域;
(2)求z的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

同步练习册答案