精英家教网 > 高中数学 > 题目详情
已知tanα=2,则
2sin2α+1
sin2α
=
13
4
13
4
分析:先将所求三角式化为二次齐次式,注意运用同角三角函数基本关系式和二倍角公式,再将分式的分子分母同除以cos2α,即可将所求化为关于tanα的式子,最后将已知代入即可
解答:解:∵
2sin2α+1
sin2α
=
2sin2α+sin2α+cos2α
2sinαcosα
=
3sin2α+cos2α
2sinαcosα

将上式分子分母同除以cos2α,得
2sin2α+1
sin2α
=
3tan2α+1
2tanα
,∵tanα=2
2sin2α+1
sin2α
=
3×22+1
2×2
=
13
4

故答案为
13
4
点评:本题考察了同角三角函数基本关系式,二倍角公式的运用,整体代入的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanθ=2,则sin2θ+sinθcosθ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,则4sin2α-3sinαcosα-5cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=2,则1+
1
2
sin2θ-3cos2θ
=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=2,则
3sinθ-2cosθ
sinθ+3cosθ
=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•武汉模拟)已知tanα=2,则
4sin3α-2cosα
5cosα+3sinα
=(  )

查看答案和解析>>

同步练习册答案