精英家教网 > 高中数学 > 题目详情
1.已知点A、B分别是左焦点为(-4,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,且椭圆C过点P($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$).
(1)求椭圆C的方程;
(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,过P点能否引圆M的切线?若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形面积;若不能,说明理由.

分析 (1)由题设知a2=b2+16,$\frac{9}{4{a}^{2}}$+$\frac{75}{4{b}^{2}}$=1,由此能求出椭圆C的标准方程.
(2)由A(-6,0),F(4,0),($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$),则得$\overrightarrow{AP}$=($\frac{15}{2}$,$\frac{5\sqrt{3}}{2}$),$\overrightarrow{FP}$=(-$\frac{5}{2}$,$\frac{5\sqrt{3}}{2}$),所以$\overrightarrow{AP}$$•\overrightarrow{FP}$=0,以AF为直径的圆M必过点P,因此,过P点能引出该圆M的切线,设切线为PQ,交x轴于Q点,又AF的中点为M(-1,0),则显然PQ⊥PM,由此能求出所求的图形面积.

解答 解:(1)由题意a2=b2+16,
$\frac{9}{4{a}^{2}}$+$\frac{75}{4{b}^{2}}$=1,
解得b2=20或b2=-15(舍),
由此得a2=36,
所以,所求椭圆C的标准方程为$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}$=1.(6分)
(2)由(1)知A(-6,0),F(4,0),
又($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$),则得$\overrightarrow{AP}$=($\frac{15}{2}$,$\frac{5\sqrt{3}}{2}$),$\overrightarrow{FP}$=(-$\frac{5}{2}$,$\frac{5\sqrt{3}}{2}$).
所以$\overrightarrow{AP}$$•\overrightarrow{FP}$=0,即∠APF=90°,△APF是Rt△,
所以,以AF为直径的圆M必过点P,因此,过P点能引出该圆M的切线,
设切线为PQ,交x轴于Q点,又AF的中点为M(-1,0),则显然PQ⊥PM,
而kPM=$\sqrt{3}$,所以PQ的斜率为-$\frac{\sqrt{3}}{3}$,
因此,过P点引圆M的切线方程为:y-$\frac{5\sqrt{3}}{2}$=-$\frac{\sqrt{3}}{3}$(x-$\frac{3}{2}$),即x+$\sqrt{3}$y-9=0.
令y=0,则x=9,∴Q(9,0),又M(-1,0),
所以S扇形MPF=$\frac{1}{2}×5×5×\frac{π}{3}$=$\frac{25π}{6}$,
因此,所求的图形面积是S=S△PQM-S扇形MPF=$\frac{75\sqrt{3}-25π}{6}$.

点评 本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若集合A={1,2,3,4},B={2,4,7,8},则集合A∪B等于.(  )
A.{1,2,3,4}B.{1,3,4}C.{1,2,3,8,4,7}D.{0,1,2,3,4,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若sin2A=sinB•sinC且(b+c+a)(b+c-a)=3bc,则该三角形的形状是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线$y=-\sqrt{1-{x^2}}$与曲线y+|ax|=0(a∈R)的交点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-2x-3≥0},B={x|y=log2(x-1)},则(∁RA)∩B=(  )
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数${z_1}=\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$,z2=3+4i,其中i为虚数单位,则$\frac{{|z_1^{2016}|}}{{|{z_2}|}}$=(  )
A.$\frac{2}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x•lnx+ax,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)在$[\frac{1}{e},e]$上的最小值;
(Ⅲ)若$g(x)=f(x)+\frac{1}{2}a{x^2}-(2a+1)x$,求证:a≥0是函数y=g(x)在x∈(1,2)时单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知条件p:x>1,条件q:x>0,则p是q的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既非充分也非必要

查看答案和解析>>

同步练习册答案