精英家教网 > 高中数学 > 题目详情
设a>0,a≠1,函数f(x)=loga(x2-2x+3)有最小值,则不等式loga(x-1)>0的解集为_________.

解析:函数的定义域是R.设函数y=logau,u=x2-2x+3,∵函数u=x2-2x+3仅有最小值,∴函数y=logau是增函数.∴a>1.由loga(x-1)>0,得x-1>1,∴x>2,即不等式的解集是{x|x>2}.

答案:{x|x>2}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)设曲线y=f(x)在x=1处得切线与直x+(e-1)y=1垂直,求a的值.
(2)若对任意实x≥0f(x)>0恒成立,确定实数a的取值范围.
(3)a=1时,是否存x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处得切线与y轴垂直?若存在求x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东省广州市高三9月三校联考理科数学试卷(解析版) 题型:选择题

函数的定义域为D,若对于任意,当时,都有,则称函

在D上为非减函数,设函数在[0,1]上为非减函数,且满足以下三个条件:

;     ②;      ③.

等于(    )

A.     B.        C.       D.无法确定

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:选择题

设函数的定义域为R,若存在与无关的正常数M,使对一切实数均成立,则称为“有界泛函”,给出以下函数:.其中是“有界泛函”的个数为    (    )

    A.0            B.1            C.2            D.3

 

查看答案和解析>>

同步练习册答案