精英家教网 > 高中数学 > 题目详情
(2012•安庆二模)函数f(x)的图象如图所示,已知函数F(x)满足F′(x)=f(x),则F(x)的函数图象可能是(  )
分析:先根据导函数f'(x)的图象得到f'(x)的取值范围,从而得到原函数的斜率的取值范围,从而得到正确选项.
解答:解:由图可得-1<f'(x)<1,即F(x)图象上每一点切线的斜率k∈(-1,1)
且在R上切线的斜率的变化先慢后快又变慢,
结合选项可知选项B符合
故选B.
点评:本题主要考查了导数的几何意义,同时考查了识图能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安庆二模)复数
1+7i
i
的共轭复数是a+bi(a,b∈R),i是虚数单位,则ab的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线
x=
7
cosφ
y=
7
sinφ
(φ为参数,φ∈R)上的点到曲线ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)设(2
3x
-1)n
的展开式的各项系数之和为M,二项式系数之和为N,若M,8,N三数成等比数列,则展开式中第四项为
-160x
-160x

查看答案和解析>>

同步练习册答案