精英家教网 > 高中数学 > 题目详情
图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3。
(1)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(2)当EC=1时,求几何体A-EFD1D的体积。
解:(1)在直四棱柱中,


又∵平面平面
平面
平面平面

∴四边形为平行四边形
∵侧棱底面,又平面

∴四边形为矩形;
(2)连结AE
∵四棱柱为直四棱柱
∴侧棱底面
平面

中,,则
中,,则
在直角梯形


又∵
平面
由(1)可知,四边形为矩形,且
∴矩形的面积为
∴几何体的体积为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学模拟系列试卷1(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

科目:高中数学 来源:2012年新课标版高考数学模拟系列试卷1(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省高考数学模拟试卷1(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

查看答案和解析>>

同步练习册答案