精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集。
解:(Ⅰ)
由f′(x)=0,得x=1,
因为当x<0时,f′(x)<0;当0<x<1时,f′(x)<0;当x>1时,f′(x)>0;
所以f(x)的单调增区间是:[1,+∞),单调减区间是:(-∞,0),(0,1]。
(Ⅱ)由
得(x-1)(kx-1)<0,
故当0<k<1时,解集是
当k=1时,解集是
当k>1时,解集是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且满足f(x)>1,求x的取值范围;
(2)若g(x)=ax2-x,是否存在a使得f(x)在区间[
1
2
,3]上是增函数?如果存在,说明a可以取哪些值;如果不存在,请说明理由.
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)=log4(4x2-x)是否为在[
1
2
,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin2x+
3
sinxcosx+1(x∈R)

(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)若x∈[0,
π
2
]
,求函数f(x)的最大值和最小值;
(Ⅲ)若把函数f(x)的图象按向量a平移后所得函数为奇函数,求使得|a|最小的a.

查看答案和解析>>

科目:高中数学 来源: 题型:

21、设函数f(x)=ax3-2x2+x+c(a>0).
(1)当a=1,且函数图象过点(0,1)时,求函数f(x)的极小值;
(2)若f(x)在(-∞,+∞)上无极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试江苏卷数学 题型:044

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.

(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的范围;

(2)若g(x)在(-1+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

同步练习册答案