精英家教网 > 高中数学 > 题目详情
4.已知点A(2,3),B(-1,1)和直线l:x+y+1=0.
(1)求直线AB与直线l的交点C的坐标;
(2)求过点A且与直线l平行的直线方程;
(3)在直线l上求一点P,使PA+PB取得最小值.

分析 (1)利用点斜式求出直线AB的方程,与直线l:x+y+1=0联立,可得C的坐标;
(2)设直线方程为x+y+c=0,代入A,可得过点A且与直线l平行的直线方程;
(3)求出A关于直线l的对称点为D,直线BD的方程,与直线l:x+y+1=0联立,可得点P,使PA+PB取得最小值.

解答 解:(1)∵点A(2,3),B(-1,1),
∴直线AB的方程为y-1=$\frac{2}{3}$(x+1),即2x-3y+5=0,
与直线l:x+y+1=0联立,可得C(-$\frac{8}{5}$,$\frac{3}{5}$);
(2)设直线方程为x+y+c=0,代入A,可得c=-5,
∴过点A且与直线l平行的直线方程为x+y-5=0;
(3)设A关于直线l的对称点为D(a,b),则$\left\{\begin{array}{l}{\frac{b-3}{a-2}=1}\\{\frac{2+a}{2}+\frac{3+b}{2}+1=0}\end{array}\right.$,∴a=-4,b=-3,
直线BD的方程为y+3=$\frac{1+3}{-1+4}$(x+4),即4x-3y+7=0,
与直线l:x+y+1=0联立,可得P(-$\frac{10}{7}$,$\frac{3}{7}$).

点评 本题考查直线方程,考查对称点的求法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.对任意的实数m,直线y=mx+n-1与椭圆x2+4y2=1恒有公共点,则n的取值范围是(  )
A.$[\frac{1}{2},\frac{3}{2}]$B.$(\frac{1}{2},\frac{3}{2})$C.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$D.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1是焦点在x轴上的椭圆,命题q:x2-mx+1=0有两个不相等的实数根.若p∧q为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x2+2(a+1)x+2在(-∞,2)上是减函数,则a的取值范围是(  )
A.(-∞,-3]B.[1,+∞)C.[-3,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正方体ABCD-A1B1C1D1中,哪几条棱所在直线与棱AB所在直线是异面直线?哪几条棱所在直线与直线B1C是异面直线?哪几条棱所在直线与直线BD1是异面直线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=1g($\frac{mx}{x+1}$+n)(m,n∈R,m>0)的图象关于原点对称.
(1)求m,n的值;
(2)若x1x2>0,试比较f($\frac{{x}_{1}{+x}_{2}}{2}$)与$\frac{1}{2}$[f(x1)+f(x2)]的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4的四个顶点连结而成的四边形面积是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}+1}$为奇函数.
(1)求实数a的值;
(2)试判断函数的单调性并加以证明;
(3)对任意的x∈R,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角为A、B、C的所对的边分别为a,b,c,且A、B、C成等差数列.且△ABC的面积为4$\sqrt{3}$,则2a+3c的最小值为8$\sqrt{6}$.

查看答案和解析>>

同步练习册答案