精英家教网 > 高中数学 > 题目详情

已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点,则|PF1|+|PA|的最大值和最小值分别是________.

答案:
解析:

  答案:

  解析:由=1可知a=3,b=,c=2,左焦点F1(-2,0),右焦点F2(2,0).

  由椭圆定义,|PF1|=2a-|PF2|=6-|PF2|,

  ∴|PF1|+|PA|=6-|PF2|+|PA|=6+|PA|-|PF2|

  ∴由||PA|-|PF2||≤|AF2|=≤|PA|-|PF2|≤.当P在AF2延长线上的P2处时,取右等号;

  当P在AF2的反向延长线上的P1处时,取左等号,即|PA|-|PF2|的最大值、最小值分别为.于是|PF1|+|PA|的最大值是,最小值是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭C:数学公式+数学公式=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4数学公式
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=数学公式上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉市华师一附中高三(上)摸底数学试卷(理科)(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州市公安三中高三(上)数学积累测试卷11(解析版) 题型:解答题

已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

同步练习册答案