精英家教网 > 高中数学 > 题目详情

已知函数

(1)若函数时有极值且在函数图象上的点(0,1)处的切线与直线的解析式;

(2)当取得极大值且加取得极小值时,设点M()所在平面区域为S,经过原点的直线L将S分别面积比为1:3的两部分求直线L的方程。

解:(1)由

函数时有极值,

处的切线与直线平行,

 

(2)解法一:由取得极大值且在取得极小值,

故点M所在平面区域S为如图△ABC,

易得

同时DE为△ABC的中位线,

∴所求一条直线L的中位线,x=0

另一种情况设不垂直于x轴的直线L也将S分为面积经为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则k>0,S四边形DEGF=1

得点F的横坐标为:

得点G的横坐标为:

即得

解得:(舍去)

故这时直线方程为

综上,所求直线方程为:x=0或

(2)解法二:由取得极大值且在取得极小值,

故点M所在平面区域S为如图△ABC,

易得

同时DE为△ABC的中位线,

∴所求一条直线L的方程为,x=0

另一种情况由于直线BO方程为:

设BO与AC交于H,

得直线L与AC交点为:

∴所求直线方程为:x=0或

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年河北衡水中学高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)当时,求函数的单调区间;

(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式数学公式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(1)若函数在[l,+∞]上是增函数,求实数的取值范围。

(2)若=一的极值点,求在[l,]上的最大值:

(3)在(2)的条件下,是否存在实数b,使得函数g()=b的图像与函的图像恰有3个交点,若存在,求出实数b的取值范围:若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省韶关市田家炳中学、乳源高级中学联考高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年广东省华南师大附中高三综合测试数学试卷3(理科)(解析版) 题型:解答题

已知函数
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

同步练习册答案