精英家教网 > 高中数学 > 题目详情

已知二次函数y=2x2-1在区间[a,b]上有最小值-1,是下面关系式一定成立的是(    )

       A.a≤0<b或a<0≤b                               B.a<0<b

       C.a<b<0或a<0<b                                   D.0<a<b或a<b<0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x
.若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)满足:①f(0)=1;②f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过坐标原点,且f′(x)=2x+1,数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列y=f(x)的解析式;
(2)求数列{an}的通项公式an
(3)求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象与x轴相切于点(-1,0),其导函数y=f′(x)与直线y=2x平行.
(1)求y=f(x)的解析式;
(2)已知
lim
x→+∞
lnx
x
=0
,试讨论方程kf′(x)-lnf(x)=0(k∈R)在区间(-1,+∞)上解得个数.

查看答案和解析>>

同步练习册答案