精英家教网 > 高中数学 > 题目详情
如图,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA平面BDE;
(2)平面PAC⊥平面BDE.
精英家教网
证明:(1)如图,连接OE
精英家教网

∵O为AC中点,E为PC中点.
∴OE为△PAC的中位线
∴OEPA
∵OE?平面BDE,PA?平面BDE
∴PA平面BDE.
(2)∵底面ABCD为正方形
∴BD⊥AC
∵PO⊥平面ABCD,BD?平面ABCD
∴PO⊥BD
∵PO?平面PAC,AC?平面PAC,AC∩PO=O
∴BD⊥平面PAC
∵BD?平面BDE
∴平面BDE⊥平面PAC
即平面PAC⊥平面BDE.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=
2
,AB=2

求证:(1)PA∥平面BDE
(2)平面PAC⊥平面BDE
(3)求二面角E-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=
2
,AB=2
,求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱锥P-ABCD的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O是正方形ABCD的中心,PO⊥面ABCD,E是PC的中点.PO=
11
AB=
2

(1)求证:BD⊥平面PAC;
(2)求异面直线PA和BE所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,O是正方形ABCD的中心,PO⊥面ABCD,E是PC的中点.PO=
11
AB=
2

(1)求证:BD⊥平面PAC;
(2)求异面直线PA和BE所成的角.
精英家教网

查看答案和解析>>

同步练习册答案