精英家教网 > 高中数学 > 题目详情
17.有三个命题:①$\frac{π}{6}$和$\frac{5π}{6}$的正弦线长度相等;②$\frac{π}{3}$和$\frac{4π}{3}$的正切线长度相等;③$\frac{π}{4}$和$\frac{5π}{4}$的余弦线长度相等.其中正确说法的个数为(  )
A.1B.2C.3D.0

分析 利用三角函数线即可判断出.

解答 解:①$\frac{π}{6}$和$\frac{5π}{6}$的正弦线长度相等,正确;
②$\frac{π}{3}$和$\frac{4π}{3}$的正切线长度相等,正确;
③$\frac{π}{4}$和$\frac{5π}{4}$的余弦线长度相等,正确.
其中正确说法的个数为3.
故选:C.

点评 本题考查了三角函数线的应用、简易逻辑的判定方法,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.集合A={1,2}的非空真子集个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={-2,0,1,3},在平面直角坐标系中,点M(x,y)的坐标x∈A,y∈A
(1)求点M在x轴上的概率;
(2)求点M满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a•2x+b的图象过点A(1,$\frac{3}{2}$),B(2,$\frac{5}{2}$).
(1)求函数y=f(x)的反函数y=f-1(x)的解析式;
(2)若F(x)=f-1(2x-1)-log${\;}_{\frac{1}{2}}$f(x),求使得F(x)≤0的x取值范围;
(3)记an=2${\;}^{{f}^{-1}(n)}$(n∈N*),是否存在正数k,使得(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥k$\sqrt{2n+1}$对n∈N*均成立?若存在,求出k的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.sin1cos2tan3值的符号是正(填“正”或“负”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\frac{134}{3}$π所在的象限为(  )
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{a{x}^{2}+x+a}{{e}^{x}}$,若当x∈[0,2]时,f(x)≥$\frac{1}{{e}^{2}}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|2x2-x-1≤0},集合B={x|y=$\frac{2ln({3}^{x}-1)}{(x-1)^{2}}$},则A∩B=(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各正切函数值:
(1)$tan\frac{14π}{3}$;
(2)$tan\frac{7π}{6}$;
(3)$tan\frac{21π}{4}$;
(4)tan(-675°).

查看答案和解析>>

同步练习册答案