精英家教网 > 高中数学 > 题目详情
已知x∈R,设[x]表示不大于x的最大整数,如[π]=3,[-1,2]=-2,[
12
]=0,则使|[x-1]|=5成立的x的取值范围是
{x|6≤x<7或-4≤x<-3}
{x|6≤x<7或-4≤x<-3}
分析:利用[x]的意义,建立不等式即可.
解答:解:因为|[x-1]|=5,所以[x-1]=5或[x-1]=-5.
若[x-1]=5,则5≤x-1<6,即6≤x<7.
若[x-1]=-5,则-5≤x-1<-4,即-4≤x<-3.
所以使|[x-1]|=5成立的x的取值范围6≤x<7或-4≤x<-3.
故答案为:{x|6≤x<7或-4≤x<-3}.
点评:本题主要考查新定义的理解与应用,正确理解[x]的意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx,g(x)=数学公式ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知x∈R,设[x]表示不大于x的最大整数,如[π]=3,[-1,2]=-2,[
1
2
]=0,则使|[x-1]|=5成立的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省天水一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=lnx,g(x)=ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案