精英家教网 > 高中数学 > 题目详情
已知Sn是等比数列{an}的前n项和,其公比为q,若S3、S9、S6成等差数列.求
(1)q3的值;
(2)求证:a3、a9、a6也成等差数列.
分析:(1)由等比数列的定义,验证得当q=1时不符合题意,因此得q≠1.再由等比数列的求和公式,结合S3、S9、S6成等差数列建立关于q的方程,解之即可得到q3的值;
(2)根据q3=-
1
2
,由等比数列的通项公式,化简可得2a9-(a3+a6)=0,即2a9=a3+a6,可得a3、a9、a6也成等差数列.
解答:解:(1)当q=1时,S3=3a1、S9=9a1、S6=6a1
显然S3、S9、S6不能成等差数列,不符合题意,因此得q≠1      (1分)
由S3、S9、S6成等差数列,得2S9=S3+S6
即2•
a1(1-q9)
1-q
=
a1(1-q3)
1-q
+
a1(1-q6)
1-q

∴化简可得2q6=1+q3,(4分)
即(2q3+1)(q3-1)=0,解之得q3=-
1
2
(舍去q3=1)(6分)
(2)由等比数列的通项公式,可得
a9=a1q8,a3+a6=a1q2+a1q5
∵q3=-
1
2

∴2a9-(a3+a6)=a1q2(2q6-1-q3
=a1q2[2×(-
1
2
2-1-(-
1
2
))=0
∴2a9=a3+a6,可得a3、a9、a6也成等差数列.(12分)
点评:本题给出等比数列的前3项和、前6项和与前9项和成等差数列,求它的公比并证明a3、a9、a6也成等差数列.着重考查了等比数列的通项公式与求和公式,考查了等差中项的概念,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,等S6等于(  )
A、
21
8
B、-
21
8
C、
17
8
D、-
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,若S3,S9,S6成等差数列,则也成等差数列的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,an∈N+,a2=30,a1S3=999.
(Ⅰ)求an和;
(Ⅱ)设Sn各位上的数字之和为bn,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案