精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{n+1}$.

分析 利用递推关系与“裂项求和”即可得出.

解答 解:∵Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,∴当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=$\frac{1}{2}$n2+$\frac{1}{2}$n-$[\frac{1}{2}(n-1)^{2}+\frac{1}{2}(n-1)]$,化为an=n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{n}{n+1}$.

点评 本题考查了递推关系与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆锥的底面半径为3,母线长为5,在圆锥内部放置一个内接圆柱(圆柱的一底面与圆锥的底面重合),
(Ⅰ)求圆柱的体积V与其底面半径r的函数关系式;
(Ⅱ)求圆柱的体积V最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“对任意的实数x,ax+b=0”是“a=0且b=0”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有以下四个结论;①$(-\frac{2}{3})^{\frac{2}{3}}$<$(\frac{1}{2})^{\frac{1}{3}}$;②若幂函数f(x)的图象经过点(2,$\sqrt{2}$),则f(x)为偶函数;③函数y=log2(x2-4x+3)的单调增区间为(2,+∞);④函数y=0.5|x|的值域为(0,1].其中正确结论的序号是①④(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,D,E分别为AC,AB的中点,沿DE将△ADE折起,使A到A′的位置,若M是A′B的中点,求证:ME∥平面A′CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R的奇函数f(x),当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,若a=(log3π)•f(log3π),b=(logπ3)•f(logπ3),c=(-lnπ)•f(-lnπ),则(  )
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,ABCD是边长为2的正方形,ED=1,DE⊥平面ABCD,EF∥BD,且EF=$\frac{1}{2}$BD.
(1)求证:BF∥平面ACE;
(2)求证平面ACE⊥平面BDEF;
(3)求直线AD与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)上有一动点M,经过左焦点F且平行于OM的直线交椭圆C于A,B两点(O为坐标原点).(1)若△OAM的面积最大值为1,求a的值;
(2)证明:|FA|•|FB|=$\frac{|OM{|}^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的定义域:
(1)y=$\frac{\root{3}{{x}^{2}-1}}{x-6}$.   
(2)y=(x-3)0+$\sqrt{1+x}$.

查看答案和解析>>

同步练习册答案