精英家教网 > 高中数学 > 题目详情
①求函数y=
3x-1
x2+x-2
的定义域;
②求函数y=x+
1-2x
的值域.
分析:①利用求函数定义域的方法将函数转化为解不等式问题.
②利用换元法将含有根式的函数转化为一元二次函数,然后在求值域.
解答:解:①要使函数有意义,则有x2+x-2>0,解得x>1或x<-2,即函数的定义域为:{x|x>1或x<-2}.
②令t=
1-2x
,t≥0
,所以x=
1-t2
2
,所以原式等价y=
1-t2
2
+t=-
1
2
(t-1)2+1

因为t≥0,所以y≤1,即函数y=x+
1-2x
的值域为(-∞,1].
点评:本题的考点是求函数定义域和值域.要求熟练掌握求函数的定义域和值域的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①求函数y=
3x-1
|x+1|+|x-1|
的定义域;
②求函数y=x+
1-2x
的值域;
③求函数y=
2x2-2x+3
x2-x+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
3x-1
|x+1|+|x-1|
的定义域;
(2)求函数y=x+
1-2x
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=3
x-1
的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=3
x-1
+4
5-x
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

①求函数y=
3x-1
|x+1|+|x-1|
的定义域;
②求函数y=x+
1-2x
的值域;
③求函数y=
2x2-2x+3
x2-x+1
的值域.

查看答案和解析>>

同步练习册答案