精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,有下列论断:
①f(x)的图象关于直线x=
π
12
对称;
②f(x)的图象关于(
π
3
,0)
对称;
③f(x)的最小正周期为π;
④在区间[-
π
6
,0]
上,f(x)为增函数.
以其中的两个论断为条件,剩下的两个论断为结论,写出你认为正确的一个命题:若
①③
①③
,则
②④
②④
.(填序号即可)
分析:经验证可得①③可推②④,由三角函数的对称性和单调性证明即可.
解答:解:由题意可得①③可推②④,下面证明之,
由③f(x)的最小正周期为π,可得
ω
=π,即ω=2,
可得f(x)=sin(2x+?),
又①f(x)的图象关于直线x=
π
12
对称;
故sin(2×
π
12
+?)=±1,即2×
π
12
+?=kπ+
π
2
,k∈Z,
解之可得?=kπ+
π
3

又因为-
π
2
<?<
π
2
,所以?=
π
3

故可得f(x)=sin(2x+
π
3
),
由于sin(2×
π
3
+
π
3
)=sinπ=0,故②f(x)的图象关于(
π
3
,0)
对称,正确;
由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
可得kπ-
12
≤x≤kπ+
π
12
,当k=0时,
单调递增区间为[-
12
π
12
]?[-
π
6
,0]
,故④在区间[-
π
6
,0]
上,f(x)为增函数,正确.
故由①③作为论断可推出②④,
故答案为:①③,②④
点评:本题考查正弦函数的对称性和单调性,作为开放性的题目为本题增加了难度,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分图象如图所示.
(1)求f(x)的表达式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期为
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向左平移
π
2
个单位可得y=g(x)的图象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步练习册答案