精英家教网 > 高中数学 > 题目详情
将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为
 
分析:正确理解题意,充分应用正方形的知识和圆的知识,表示出两种图形的面积.构造目标函数后结合目标函数的特点--一元二次函数,利用二次函数的性质求最值.
解答:解析:设正方形周长为x,则圆的周长为1-x,半径r=
1-x

∴S=(
x
4
2=
x2
16
,S=π•
(1-x)2
4π2

∴S+S=
(π+4)x2-8x+4
16π
(0<x<1).
∴当x=
4
π+4
时有最小值.
答案:
4
π+4
点评:本题充分考查了正方形和圆的知识,目标函数的思想还有一元二次函数求最值的知识.在解答过程当中要时刻注意定义域优先的原则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将长度为1的铁丝分成两段,分别围成一个正方形与一个圆形,则当它们的面积之积最大时,正方形与圆的周长之比为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形与圆的面积之和最小,正方形的周长应为_______.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:2.10 函数的最值(解析版) 题型:解答题

将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为   

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修1单调性与最大(小)值练习卷(二)(解析版) 题型:填空题

将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形和圆的面积之和最小,则正方形的周长应为__________.

 

查看答案和解析>>

同步练习册答案