精英家教网 > 高中数学 > 题目详情
用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(    )

A.(k+1)2+2k2                              B.(k+1)2+k2

C.(k+1)2                                  D.(k+1)[2(k+1)2+1]

解析:n=k时,左式=12+22+…+(k-1)2+k2+(k-1)2+…+22+12;

n=k+1时,左式=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12.

∴增加的式子为(k+1)2+k2.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明
1
2
+cosα+cos3α+…+cos(2n-1)α=
sin
2n+1
2
a•cos
2n-1
2
a
sina
(k∈Z*,α≠kπ,n∈N+),在验证n=1时,左边计算所得的项是
1
2
+cosα
1
2
+cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12
n(2n2+1)
3
时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)
3
时,从“k到k+1”左边需增加的代数式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)3
时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是
(k+1)2+k2
(k+1)2+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+32+…+n2=
n(n+1)(2n+1)6
,(n∈N*

查看答案和解析>>

同步练习册答案