精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)和f(-1)的值;
(2)判断f(x)的奇偶性并证明;
(3)若f(4)=1,f(3x+4)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
分析:(1)赋值法:令x1=x2=1,可求f(1),令x1=x2=-1,可求f(-1);
(2)令x1=-1,根据函数奇偶性的定义即可判断;
(3)由f(4)=1,得f(16)=f(4)+f(4)=2,从而不等式可化为f(3x+4)<f(16),借助函数的奇偶性、单调性可去掉不等式中的符号“f”,解不等式组即可.
解答:解:(1)令x1=x2=1,有f(1)=f(1)+f(1),
所以f(1)=0.
令x1=x2=-1,有f(1)=f(-1)+f(-1)=0,
所以f(-1)=0.
(2)f(x)为偶函数,证明如下:
令x1=-1,有f(-x2)=f(-1)+f(x2),
∴f(-x2)=f(x2),
又定义域关于原点对称,所以f(x)为偶函数.
(3)因为f(4)=1,所以f(16)=f(4)+f(4)=2,
所以f(3x+4)<f(16),
又函数为偶函数,所以f(|3x+4|)<f(16),
所以
-16<3x+4<16
3x+4≠0
,解得x的取值范围是:-
20
3
<x<4且x≠-
4
3
点评:本题考查抽象函数的奇偶性、单调性及抽象不等式的求解,定义、性质是解决抽象函数问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案