精英家教网 > 高中数学 > 题目详情
(1)若,求的最大值。
(2)为何值时,直线和曲线有两个公共点。
(1);(2)点P的坐标为
(3)当时,d取最小值

试题分析: (1)根据已知条件,结合一正二定,三相等的思想来求解最值。
(2)联立方程组,根据得到的方程的解的个数得到结论。
(1)已知双曲线实半轴a1=4,虚半轴b1=2,半焦距c1=
∴椭圆的长半轴a2=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴=
∴所求的椭圆方程为                   …………4分
(2)由已知,,设点P的坐标为,则
由已知得
             …………6分
,解之得,       
由于y>0,所以只能取,于是,所以点P的坐标为……8分
(3)直线,设点M是,则点M到直线AP的距离是,于是
又∵点M在椭圆的长轴上,即         …………10分
∴当时,椭圆上的点到的距离
   
  ∴当时,d取最小值         …………12分
点评:解决该试题的关键是能根据题中的条件,得到均值不等式的结构,求解最值也可以通过二次函数的性质来求解最值,同时要对于直线与双曲线的位置关系,通过联立方程组,转换为方程的解的问题来得到。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

三个数之间的大小关系是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数是定义域为的可导函数,且对任意实数都有成立.若当时,不等式成立,设,则的大小关系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的大小关系是 
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知x为正实数,且xy=2x+2,则的最小值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

<0,已知下列不等式:①a+b<ab;②|a|>|b|;③a<b;④ a2>b2
其中正确的不等式个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则三者的从小到大的关系为__________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中的最小值等于的是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案